import pandas as pd
data = {
'Name': ['John', 'Jane', 'Mike', 'Emily', 'Tom', 'Alex', 'Sara'],
'Age': [25, 31, 45, 19, 27, 33, 28],
'City': ['New York', 'London', 'Paris', 'Tokyo', 'Sydney', 'New York', 'New York'],
'Salary': [50000, 75000, 90000, 40000, 60000, 80000, 65000]
}
df = pd.DataFrame(data)
# Print column as list
df['Name']
0 John 1 Jane 2 Mike 3 Emily 4 Tom 5 Alex 6 Sara Name: Name, dtype: object
# Print column as dataframe
df[['Name']]
| Name | |
|---|---|
| 0 | John |
| 1 | Jane |
| 2 | Mike |
| 3 | Emily |
| 4 | Tom |
| 5 | Alex |
| 6 | Sara |
# Print column as dataframe
df[['Name', 'City']]
| Name | City | |
|---|---|---|
| 0 | John | New York |
| 1 | Jane | London |
| 2 | Mike | Paris |
| 3 | Emily | Tokyo |
| 4 | Tom | Sydney |
| 5 | Alex | New York |
| 6 | Sara | New York |
# Get all unique entries in column
df['City'].unique()
array(['New York', 'London', 'Paris', 'Tokyo', 'Sydney'], dtype=object)
# Get how much a single entrie exists in the dataframe
# df[['City']].value_counts() # value_counts of dataframe
df['City'].value_counts() # value_counts of specific column
New York 3 London 1 Paris 1 Tokyo 1 Sydney 1 Name: City, dtype: int64
# Binary filter on string column
df[(df['City'].str.contains('New York'))]
| Name | Age | City | Salary | |
|---|---|---|---|---|
| 0 | John | 25 | New York | 50000 |
| 5 | Alex | 33 | New York | 80000 |
| 6 | Sara | 28 | New York | 65000 |
# Binary filter on int column
df[(df['Salary'] >= 70000)]
| Name | Age | City | Salary | |
|---|---|---|---|---|
| 1 | Jane | 31 | London | 75000 |
| 2 | Mike | 45 | Paris | 90000 |
| 5 | Alex | 33 | New York | 80000 |
# Binary filter on multiple int column
df[(df['Salary'] >= 70000) & (df['Age'] < 35)]
| Name | Age | City | Salary | |
|---|---|---|---|---|
| 1 | Jane | 31 | London | 75000 |
| 5 | Alex | 33 | New York | 80000 |
# Binary filter to get all records where Salary is not null or NaN
df[(df['Salary'].notnull())]
| Name | Age | City | Salary | |
|---|---|---|---|---|
| 0 | John | 25 | New York | 50000 |
| 1 | Jane | 31 | London | 75000 |
| 2 | Mike | 45 | Paris | 90000 |
| 3 | Emily | 19 | Tokyo | 40000 |
| 4 | Tom | 27 | Sydney | 60000 |
| 5 | Alex | 33 | New York | 80000 |
| 6 | Sara | 28 | New York | 65000 |